Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
14 / 12256 / 12384
S 67.339861°
E 89.296875°
← 941.31 m → S 67.339861°
E 89.318848°

941.12 m

941.12 m
S 67.348325°
E 89.296875°
← 940.97 m →
885 731 m²
S 67.348325°
E 89.318848°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 14 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 12256 0…2zoom-1
    Kachel-Y ty 12384 0…2zoom-1
  2. Aus der Kartenposition x=0.748077392578125 y=0.755889892578125 und der Vergrößerungsstufe zoom=14 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.748077392578125 × 214)
    floor (0.748077392578125 × 16384)
    floor (12256.5)
    tx = 12256
    Kachel-Y (ty) floor (y × 2zoom) floor (0.755889892578125 × 214)
    floor (0.755889892578125 × 16384)
    floor (12384.5)
    ty = 12384
    Kachel-Pfad (ti) "zoom/tx/tz" 14 / 12256 / 12384 ti = "14/12256/12384"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/14/12256/12384.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 12256 ÷ 214
    12256 ÷ 16384
    x = 0.748046875
    Y-Position (y) ty ÷ 2tz 12384 ÷ 214
    12384 ÷ 16384
    y = 0.755859375
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.748046875 × 2 - 1) × π
    0.49609375 × 3.1415926535
    Λ = 1.55852448
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.755859375 × 2 - 1) × π
    -0.51171875 × 3.1415926535
    Φ = -1.6076118656582
    Länge (λ) Λ (unverändert) 1.55852448} λ = 1.55852448}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(-1.6076118656582))-π/2
    2×atan(0.200365543002917)-π/2
    2×0.197747018785645-π/2
    0.39549403757129-1.57079632675
    φ = -1.17530229
    Länge in Grad λ ÷ π × 180° 1.55852448} ÷ 3.1415926535 × 180° lon = 89.296875°
    Breite in Grad φ ÷ π × 180° -1.17530229 ÷ 3.1415926535 × 180° lat = -67.339861°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 12256 KachelY 12384 1.55852448 -1.17530229 89.296875 -67.339861
    Oben rechts KachelX + 1 12257 KachelY 12384 1.55890798 -1.17530229 89.318848 -67.339861
    Unten links KachelX 12256 KachelY + 1 12385 1.55852448 -1.17545001 89.296875 -67.348325
    Unten rechts KachelX + 1 12257 KachelY + 1 12385 1.55890798 -1.17545001 89.318848 -67.348325
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(-1.17530229--1.17545001) × R
    0.000147719999999962 × 6371000
    dl = 941.12411999976m
    Rechte Seite abs(φORUR) × R abs(-1.17530229--1.17545001) × R
    0.000147719999999962 × 6371000
    dr = 941.12411999976m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(1.55852448-1.55890798) × cos(-1.17530229) × R
    0.000383500000000092 × 0.385264136093535 × 6371000
    do = 941.307580538634m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(1.55852448-1.55890798) × cos(-1.17545001) × R
    0.000383500000000092 × 0.385127814937679 × 6371000
    du = 940.974509989437m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(-1.17530229)-sin(-1.17545001))×
    abs(λ12)×abs(0.385264136093535-0.385127814937679)×
    abs(1.55890798-1.55852448)×0.000136321155855434×
    0.000383500000000092×0.000136321155855434×6371000²
    0.000383500000000092×0.000136321155855434×40589641000000
    ar = 885730.539629253m²