Formelsatz mit MathJax (MathML, AsciiMath und TeX)

MathML:

When a0 , there are two solutions to ax2 + bx + c = 0 and they are x = b ± b2 4ac 2a .

Ascii-Math:

⟪ x = (-b +- sqrt(b^2-4ac))/(2a) .⟫

⟪ e = m c^2 ⟫

⟪ a^2 + b^2 = c^2 ↔ c = +- sqrt(a^2 + b^2) ⟫

⟪ sum_(i=1)^n i^3 = ((n(n+1))/2)^2 ⟫

⟪x! = { (1 , if x le 1 ","), (x*(x-1)! , if x ge 2 ".") :}⟫

TeX:

When \(a \ne 0\), there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$

Kettenbruch:

\[ \frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } } \]

Maxwellsche Gleichungen:

\begin{align} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align}