Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
14 / 12306 / 12306
S 66.670387°
E 90.395508°
← 967.59 m → S 66.670387°
E 90.417481°

967.44 m

967.44 m
S 66.679087°
E 90.395508°
← 967.25 m →
935 915 m²
S 66.679087°
E 90.417481°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 14 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 12306 0…2zoom-1
    Kachel-Y ty 12306 0…2zoom-1
  2. Aus der Kartenposition x=0.751129150390625 y=0.751129150390625 und der Vergrößerungsstufe zoom=14 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.751129150390625 × 214)
    floor (0.751129150390625 × 16384)
    floor (12306.5)
    tx = 12306
    Kachel-Y (ty) floor (y × 2zoom) floor (0.751129150390625 × 214)
    floor (0.751129150390625 × 16384)
    floor (12306.5)
    ty = 12306
    Kachel-Pfad (ti) "zoom/tx/tz" 14 / 12306 / 12306 ti = "14/12306/12306"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/14/12306/12306.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 12306 ÷ 214
    12306 ÷ 16384
    x = 0.7510986328125
    Y-Position (y) ty ÷ 2tz 12306 ÷ 214
    12306 ÷ 16384
    y = 0.7510986328125
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.7510986328125 × 2 - 1) × π
    0.502197265625 × 3.1415926535
    Λ = 1.57769924
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.7510986328125 × 2 - 1) × π
    -0.502197265625 × 3.1415926535
    Φ = -1.57769924029529
    Länge (λ) Λ (unverändert) 1.57769924} λ = 1.57769924}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(-1.57769924029529))-π/2
    2×atan(0.206449542993444)-π/2
    2×0.203589282142873-π/2
    0.407178564285747-1.57079632675
    φ = -1.16361776
    Länge in Grad λ ÷ π × 180° 1.57769924} ÷ 3.1415926535 × 180° lon = 90.395508°
    Breite in Grad φ ÷ π × 180° -1.16361776 ÷ 3.1415926535 × 180° lat = -66.670387°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 12306 KachelY 12306 1.57769924 -1.16361776 90.395508 -66.670387
    Oben rechts KachelX + 1 12307 KachelY 12306 1.57808274 -1.16361776 90.417481 -66.670387
    Unten links KachelX 12306 KachelY + 1 12307 1.57769924 -1.16376961 90.395508 -66.679087
    Unten rechts KachelX + 1 12307 KachelY + 1 12307 1.57808274 -1.16376961 90.417481 -66.679087
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(-1.16361776--1.16376961) × R
    0.000151849999999953 × 6371000
    dl = 967.436349999703m
    Rechte Seite abs(φORUR) × R abs(-1.16361776--1.16376961) × R
    0.000151849999999953 × 6371000
    dr = 967.436349999703m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(1.57769924-1.57808274) × cos(-1.16361776) × R
    0.00038349999999987 × 0.396020149714119 × 6371000
    do = 967.58751736296m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(1.57769924-1.57808274) × cos(-1.16376961) × R
    0.00038349999999987 × 0.395880710128403 × 6371000
    du = 967.246827621132m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(-1.16361776)-sin(-1.16376961))×
    abs(λ12)×abs(0.396020149714119-0.395880710128403)×
    abs(1.57808274-1.57769924)×0.000139439585715717×
    0.00038349999999987×0.000139439585715717×6371000²
    0.00038349999999987×0.000139439585715717×40589641000000
    ar = 935914.540081756m²