Die Mathematik von Kartenkacheln interaktiv erklärt

Tele ← 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 → Makro
17 / 49148 / 81916
S 40.971603°
W 45.010986°
← 230.61 m → S 40.971603°
W 45.008240°

230.57 m

230.57 m
S 40.973677°
W 45.010986°
← 230.60 m →
53 169 m²
S 40.973677°
W 45.008240°

Die Berechnung

  1. Aus der URL werden die Kachel-Parameter übernommen:
    Name Parameter Wert Wertebereich Erklärung zum Wertebereich
    Vergrößerungsstufe tz 17 0… Keine obere Grenze. Es sollte aber Kacheln für die gewählte Stufe geben.
    Kachel-X tx 49148 0…2zoom-1
    Kachel-Y ty 81916 0…2zoom-1
  2. Aus der Kartenposition x=0.374973297119141 y=0.624973297119141 und der Vergrößerungsstufe zoom=17 berechnen wir die Kachelnummer:
    Name Formel Berechnung Ergebnis
    Kachel-X (tx) floor (x × 2zoom) floor (0.374973297119141 × 217)
    floor (0.374973297119141 × 131072)
    floor (49148.5)
    tx = 49148
    Kachel-Y (ty) floor (y × 2zoom) floor (0.624973297119141 × 217)
    floor (0.624973297119141 × 131072)
    floor (81916.5)
    ty = 81916
    Kachel-Pfad (ti) "zoom/tx/tz" 17 / 49148 / 81916 ti = "17/49148/81916"
  3. Anzeige der Kachel https://a.tile.openstreetmap.org/17/49148/81916.png und Kaffeepause.
  4. Wir berechnen aus der Kachelnummer die Koordinaten der linken oberen Kachelecke.
    Name Formel Berechnung Ergebnis
    X-Position (x) tx ÷ 2tz 49148 ÷ 217
    49148 ÷ 131072
    x = 0.374969482421875
    Y-Position (y) ty ÷ 2tz 81916 ÷ 217
    81916 ÷ 131072
    y = 0.624969482421875
    Länge (Λ)
    (Merkator)
    +(x × 2 - 1) × π +(0.374969482421875 × 2 - 1) × π
    -0.25006103515625 × 3.1415926535
    Λ = -0.78558991
    Breite (Φ)
    (Merkator)
    -(y × 2 - 1) × π -(0.624969482421875 × 2 - 1) × π
    -0.24993896484375 × 3.1415926535
    Φ = -0.78520641577652
    Länge (λ) Λ (unverändert) -0.78558991} λ = -0.78558991}
    Breite (φ) 2×atan(exp(Φ))-π/2 2×atan(exp(-0.78520641577652))-π/2
    2×atan(0.456025561199594)-π/2
    2×0.427853472671378-π/2
    0.855706945342757-1.57079632675
    φ = -0.71508938
    Länge in Grad λ ÷ π × 180° -0.78558991} ÷ 3.1415926535 × 180° lon = -45.010986°
    Breite in Grad φ ÷ π × 180° -0.71508938 ÷ 3.1415926535 × 180° lat = -40.971603°
  5. Die Koordinaten der anderen Ecken werden aus den Kachelnummern der Nachbarkacheln berechnet:
    Ecke tx ty λ φ Länge in Grad Breite in Grad
    Oben links KachelX 49148 KachelY 81916 -0.78558991 -0.71508938 -45.010986 -40.971603
    Oben rechts KachelX + 1 49149 KachelY 81916 -0.78554197 -0.71508938 -45.008240 -40.971603
    Unten links KachelX 49148 KachelY + 1 81917 -0.78558991 -0.71512557 -45.010986 -40.973677
    Unten rechts KachelX + 1 49149 KachelY + 1 81917 -0.78554197 -0.71512557 -45.008240 -40.973677
  6. Die Kantenlängen werden aus den Koordinaten der Eckpunkte sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Linke Seite abs(φOLUL) × R abs(-0.71508938--0.71512557) × R
    3.61899999999915e-05 × 6371000
    dl = 230.566489999946m
    Rechte Seite abs(φORUR) × R abs(-0.71508938--0.71512557) × R
    3.61899999999915e-05 × 6371000
    dr = 230.566489999946m
    Obere Seite abs(λOLOR) × cos(φOL) × R abs(-0.78558991--0.78554197) × cos(-0.71508938) × R
    4.79399999999686e-05 × 0.755034639110788 × 6371000
    do = 230.607013375894m
    Untere Seite abs(λULUR) × cos(φUL) × R abs(-0.78558991--0.78554197) × cos(-0.71512557) × R
    4.79399999999686e-05 × 0.755010909379666 × 6371000
    du = 230.599765705206m
  7. Die Fläche wird aus den Koordinaten von linker oberer und rechter unterer Ecke sowie dem Erdradius R berechnet:
    Name Formel Berechnung Ergebnis
    Fläche abs(λ12)×abs(sinφ1-sinφ2)× abs(λ12)×abs(sin(-0.71508938)-sin(-0.71512557))×
    abs(λ12)×abs(0.755034639110788-0.755010909379666)×
    abs(-0.78554197--0.78558991)×2.37297311224127e-05×
    4.79399999999686e-05×2.37297311224127e-05×6371000²
    4.79399999999686e-05×2.37297311224127e-05×40589641000000
    ar = 53169.4141143023m²